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SUMMARY 

In order to establish the role of microstructure on fatigue in the absence of corrosion, the fatigue 
crack growth (FCG) behavior of underaged and overaged 7075 aluminum alloy was investigated 
in vacuum of 4xl0"8 torr. The specimens were subjected to fatigue loading of constant amplitude 
with various stress ratios, ranging from 0.1 to 0.85, in vacuum of 4xl0"8 torr. The measured FCG 
was analyzed in terms of two driving force parameters, threshold stress intensity range (AKn,) and 
maximum stress intensity (Kmax)- The result indicates that the underaged specimen has lower 
electrical conductivity, higher hardness, and greater resistance to threshold FCG than the 
overaged one. This is attributed to the different microstructures, produced by the different aging 
treatments, and the resultant different slip modes, planar and wavy. 
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INTRODUCTION 

It has been known that a microstructure plays a major role on the fatigue crack growth (FCG) 
behavior of a metallic material. There are various microstructural features that potentially affect 
the FCG. Grain and subgrain boundaries serve as barriers to the transmission of slip-band cracks, 
and constituent particles and hardening precipitates influence the FCG significantly. 

A number of studies have been conducted to ascertain the effect of microstructure on the FCG in 
aluminum alloys (references 1 through 15). Underaging produces coherent precipitates, which are 
sheared by moving dislocations resulting in planar slip, along which a fatigue crack grows. 
Overaging produces incoherent precipitates, which are looped and bypassed by dislocations 
resulting in wavy slip. Fatigue tests on a 7075 aluminum alloy in vacuum have shown the 
underaged microstructure resulting in a higher threshold level and a greater FCG resistance, 
compared to the overaged one (reference 4). The difference is believed to be attributed to the 
following mechanism (references 4 and 15). 

• Crystallographic transgranular crack growth and deflection occur in underaged alloys 
(typically in 7075-T351), containing shearable hardening Guinier-Preston (GP) zones of very 
small size (about 10 A diameter). Furthermore, Cu and Mg in solid solution lower the 
stacking fault energy and restrict cross-slip. In such a case, the damage process results from 
the to and fro motion of dislocations (very easy in the absence of dispersoid trapping points), 
which progressively induces dislocation jogging and cutting up. Therefore, a predominantly 
planar slip mode is observed leading to slow FCG. 

• A smooth mode of crack growth occurs in overaged alloys, containing incoherent 
precipitates. The large precipitates (about 200 A) resist shearing and are widely spaced for the 
dislocations to pass between them. Furthermore, lesser contents of Cu and Mg in solid 
solution lead to easier cross-slip. Consequently, the FCG becomes greater with 
predominantly wavy slip mode and a flat crack path. 

Besides the microstructure, stress ratio R has also been known to play a key role on FCG 
behavior of a metallic material. To account for the variation of FCG behavior with R, a self- 
consistent concept has been developed (references 16 through 23). The concept states that (a) two 
driving force parameters, stress intensity factor range (AK) and maximum stress intensity (Kma*), 
are required to describe cyclic damage; (b) there are two thresholds corresponding to the 
parameters that must be satisfied for a crack to grow; (c) the two thresholds are intrinsic and are 
independent of specimen geometry; (d) a fundamental threshold curve can be developed that is 
independent of test methods defining the two thresholds from the asymptotic values; and (e) the 
two thresholds vary with the degree of slip planarity, microstructure, and environment. Based on 
this concept, the entire FCG behavior falls into five different classes (reference 21), defined by 
the experimental AKth - R data, where AKm is the threshold value of AK. This unified concept is 
applicable to a variety of materials at all crack growth rates (references 20 and 22) and short and 
long cracks (references 23 and 24). 
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This report discusses the role of aging-induced microstructure on the FCG behavior of a 7075 
aluminum alloy in vacuum, using the two driving force parameters for threshold FCG, AKa, and 
K -max- 

EXPERIMENTAL PROCEDURE 

Two pieces of specimen material, a 7075 aluminum alloy, was received from Professor Stefanie 
Tschegg at the Institute of Meteorology and Physics, Vienna, Austria, via Dr. A. K. Vasudevan at 
the Office of Naval Research, Arlington, Virginia. The chemical composition is shown in table 1. 

Table 1: Chemical Composition of Specimen Material (wt %) 

Element Measured 
Nominal 

(Reference 25) 
Cu 1.80 1.2-2.0 
Mg 2.57 2.1-2.9 
Mn 0.053 0.30 
Si 0.126 0.50 
Zn 5.65 5.1-6.1 
Cr 0.02 0.18-0.40 
Al Balance Balance 

The measured Cr content, 0.02%, is less than the nominal one, 0.18 - 0.40%. 

The two pieces of specimen material were initially subjected to the following heat treatments in 
air at the Institute of Meteorology and Physics, Vienna, Austria. 

• Solution Treatment: Heating at 470°C for 45 min and Water Quenching 
• Underaging Treatment of the 1st Piece: Freezing in Liquid Nitrogen for 15 min and Heating 

at 50°C for 10 min and at 117°C for 90 min 
• Overaging T7351 Treatment of the 2nd Piece: Heating at 107°C for 8 hr and at 163°C for 

65 hr 

From each of the underaged and overaged pieces, sheets of 24 x 4 x (0.18-0.23) mm were sliced 
with a diamond wheel saw. From each sheet, disks of 3 mm diameter were punched out with a 
circular sample punch. Subsequently, they were thinned electrolytically to foils of thickness 500 
to 1000 A in a twin-jet electropolisher. The electrolyte was composed of 70% methyl alcohol and 
30% nitric acid, chilled to -25°C. The foil was examined in a transmission electron microscope 
(TEM), JEOL JEM-100CXII, operating at an accelerating voltage of 120 kV. 

The electrical conductivity was measured with a MAGNAFLUX FM-140 Digital Conductivity 
Meter. The hardness was determined using the Rockwell B (RB) scale [1.6 mm (1/16 in.) ball 
indenter under a 100 kg load] in a Rockwell Hardness Tester. 
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The underaged and overaged pieces were machined to compact tension [C(T)] specimens, 
24.1 mm (0.948 in.) wide and 4.6 mm thick (0.180 in.), in the T-L orientation, employing an 
Electrodischarge Machine, figure A-l. 

For the fatigue testing, a closed-loop servo-hydraulic mechanical test machine (MTS) of 89 KN 
(20 kip) capacity was used. A vacuum system of 4 x 10"8 torr capacity was attached to the MTS 
machine. The MTS machine was suitably interfaced with a laboratory computer system for 
automated monitoring of FCG, using either compliance or d-c potential drop technique. 

The FCG test was conducted under stress control in tension-tension cycling of frequency 10 Hz 
with a sinusoidal waveform and stress ratios, ranging from 0.1 to 0.85, at ambient temperature in 
vacuum of 4xl0"8 torr. The fatigue crack length was continuously monitored with a laboratory 
computer system, using compliance technique. The fatigue loading procedure was K-decreasing 
(load shedding) for the FCG rate da/dN below 2.54 x 10"5 mm/cycle (1 x 10"6 in./cycle) and 
K-increasing for the da/dN above 2.54 x 10"5 mm/cycle (10"6 in./cycle). 

After fatigue testing, the crack path profile, visible in the polished and etched side face of the 
specimen, was examined with an optical microscope. The crack surface morphology or 
fractograph was examined with a scanning electron microscope (SEM), JEOL JSM-5800LV, 
operating at an accelerating voltage of 20 kV. 

RESULTS 

FATIGUE CRACK GROWTH RATE AND STRESS INTENSITY RANGE 

Raising R was observed to increase the FCG rate, da/dN, and reduce the AKth under both 
underaged and overaged conditions. The typical variation of da/dN with AK is shown for 
underaged and overaged specimens at stress ratios R = 0.1 and 0.85 in figures A-2 and A-3. The 
FCG rates of underaged and overaged specimens are compared for R = 0.1 and 0.85 in 
figures A-4 and A-5. The da/dN is greater and the AKth is smaller for the overaged condition than 
for the underaged one. 

THRESHOLD STRESS INTENSITY RANGE AND MAXIMUM STRESS INTENSITY 

The variations of AK,h and Kmax = AKth/(l- R), with R, are shown in figures A-6 and A-7, 
respectively. AKth decreases with increasing R, steeply under the underaged condition and little 
under the overaged condition. The magnitude of AKu, at a given R is greater under the underaged 
condition than under the overaged condition. Kmax increases with increasing R, gradually at R < 
0.5 and steeply at R > 0.5. The magnitude of Kmax at a given R is also greater under underaged 
condition than under overaged condition. 

AKth is plotted against Kmax for the underaged and overaged conditions in figure A-8. Such a plot, 
called Fundamental Fatigue Threshold Curve, provides interrelation between the two parameters, 
AKth and Kmax, defining regions, where fatigue crack grows (above the curve) and where it does 
not (below the curve) (reference 21). Li other words, the curve delineates a boundary where FCG 
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starts for a given Kmax and indicates the resistance to threshold FCG. In figure A-8, the underaged 
curve is located above the overaged one. This demonstrates that the underaged treatment can 
offer a 7075 aluminum alloy a greater resistance to threshold FCG than the overaged one. 

TRANSMISSION ELECTRON MICROSCOPE MICROGRAPH, ELECTRICAL 
CONDUCTIVITY. AND HARDNESS 

The TEM, used for this investigation at the NAWCAD Patuxent River, Maryland (Code 4.3.4.2) 
laboratory, has a limited power of resolution and it cannot resolve tiny coherent precipitates of 
GP zone of 20 to 60 A diameter (reference 26). The TEM micrographs of the underaged and 
overaged pieces, are shown in figures A-9 and A-10, respectively. That of the underaged one, 
figure A-9, shows a few precipitates, having diameter greater than 90 A, which appear to be 
semi-coherent transition precipitates r|', dispersoids, and dislocations. Smaller and coherent GP 
zones are not visible. On the other hand, that of the overaged one, figure A-10, shows 
agglomerated incoherent precipitate-particles of t| or MgZn2 and some dispersoids. 

The electrical conductivities and hardnesses of the underaged and overaged pieces are 27.6 and 
40.1% International Annealed Copper Standard (IACS) and 89.3 and 77.5 RB, respectively. 

CRACK PATH 

The typical crack paths in the underaged and overaged specimens are shown in figure A-ll. In 
the underaged specimen, the fatigue crack path is transgranular, sharply-angled and tortuous, 
deflecting, and branching, figure A-11(a). Most of the deflections, including zigzagging, are 
observed to have occurred at grain boundaries and precipitate particles. Some of the deflection 
angles are measured to be about 30, 45, and 70 deg. On the other hand, in the overaged 
specimens, the fatigue crack path is transgranular and nearly straight linear with no deflection, 
figure A-l 1(b). 

FATIGUE FRACTOGRAPH 

A considerable difference is observable in fractographic features between the underaged and 
overaged conditions and between the stress ratios. The typical fractographs of the underaged and 
overaged specimens of stress ratios R = 0.1 and R = 0.85 are shown for two different FCG rates, 
(7.6-12.7) x 10'10 m/cycle and (1.0-1.5) x 10"10 m/cycle [(3-5) x 10"8 in./cycle and (4-6) x 
10"9 in./cycle] in figures A-12 and A-13, respectively. The underaged condition is characterized 
by a faceted FCG. The facets are formed on crystallographic planes, their orientation changes 
from grain to grain, and the crack surface is quite rough. The crystallographic facets are sharper 
and cover a more area at R = 0.85 than at R = 0.1. They are consistent with a predominantly 
planar slip mode, which preferentially occurs when the precipitates are shearable. On the other 
hand, the crack surface of the overaged specimen is relatively flat, exhibiting some featureless 
regions, patches of faint striations, and dimples. Better defined and more dimples are observable 
at R = 0.85 than at R = 0.1. 
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DISCUSSION 

FATIGUE CRACK GROWTH BEHAVIOR 

The observed increasing da/dN and decreasing AKth with increasing R in the underaged and 
overaged 7075 aluminum alloy, figures A-2 and A-3, are in agreement with the results obtained 
for the other materials (references 2, 8, 9,12, 21, and 27 through 43). The observed greater da/dN 
and smaller AKa, under the overaged condition than under the underaged condition in vacuum, 
figures A-4 and A-5, are also reported by other investigators (references 2, 4, 9, and 44). 

AKth decreased and K^ increased with increasing R from 0.1 to 0.85, figures A-6 and A-7. The 
rate of AKth decrease with increasing R is greater in the underaged condition than in the overaged 
condition. Such a decreasing AK with increasing R was also observed during the study on 
AerMet 100 steel (reference 45) and 2618-T651 aluminum alloy (reference 46) in vacuum. On 
the other hand, some investigators reported independence of AKth on R in vacuum (references 2, 
4, 9, 44, and 47). Throughout the range of R employed, AKu, and Kmax are greater, evidencing a 
greater resistance to the threshold FCG, in the underaged condition than in the overaged 
condition. This is confirmed by the two Fundamental Fatigue Threshold Curves, one for the 
underaged condition located above the other for the overaged condition, figure A-8. 

SPECIMEN MATERIAL 7075 ALUMINUM ALLOY 

7075 aluminum alloy contains three types of second-phase particles; namely, secondary 
intermetallics, dispersoids, and metastable precipitates, which influence mechanical properties, 
including fatigue resistance (reference 3). 

Secondary intermetallics (~1 to 30 urn) are the largest of these particles. They form during 
solidification, combining impurity elements Fe and Si with Al and solute atoms. These coarse 
intermetallic particles do not contribute to strength. However, as they are brittle, they fracture or 
separate from the matrix at high local strains. Decreasing volume fraction of these particles 
increases fracture toughness and FCG resistance at high AK. 

Dispersoid particles (0.02 to 0.3 pn) form by solid-state precipitation of Cr and Zr at 
temperatures above about 425°C. Under monotonic tension loading, dispersoids decrease energy 
to propagate cracks by initiating microvoids that coalesce to link incipient cracks initiated at 
larger constituents particles. Energy required to propagate a crack under monotonic tension 
loading increases as volume fraction decreases and as dispersoid spacing decreases. Dispersoids 
do not affect the FCG resistance at intermediate AK. 

Metastable precipitates (0.002 to 0.01 urn) are the smallest type second-phase particles, and they 
contain the major solute elements Zn, Mg, and Cu. Precipitates develop in uncontrolled manner 
during quenching or in a controlled manner during aging. The structure and composition of 
precipitates have a direct effect on strength and resistance to environment. 
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Considering the temperatures (50°C to 163°C), employed for the underaging and overaging 
treatments, the characteristics (kind, size, and spacing) of the aging-produced precipitates must 
be the deciding factors for the different FCG behaviors observed. 

Quenching an aluminum alloy after a solution heat treatment generally results in a low electrical 
conductivity, because a large part of the constituents present are retained in solid solution 
(reference 48). The electrical conductivity decreases in the initial stage of the subsequent aging 
due to GP zone and increases in the later stage (particularly at elevated temperatures) due to 
removal of constituents from solid solution (reference 48). On the one hand, the hardness is 
decreased by aging. The measured electrical conductivity for underaging, 27.6% IACS, is lower 
than that for peak aging of 7075 aluminum alloy (7075-T6), 30.5-36.0% IACS (reference 49). 
The measured one for overaging, 40.1% IACS, is in agreement with that for 7075-T73 aluminum 
alloy, 40.0-43.0% IACS (reference 49). The measured hardness for underaging, 89.3 RB, is 
greater than that for 7075-T6 aluminum alloy, 84.0 RB, and the one for overaging, 77.5 RB, is 
close to that for 7075-T73 aluminum alloy, 78.0 RB (reference 49). 

FATIGUE CRACK GROWTH MECHANISMS 

Though the coherent precipitates were not clearly resolved, as figure A-9 shows, it is believed 
that the underaging must have produced coherent precipitates (reference 48). On the other hand, 
the overaging produced incoherent precipitates of MgZn2, as shown in figure A-10. The crack 
path in the underaged specimen is tortuous, deflecting, and branching,.figure A-ll(a), whereas 
that in the overaged specimen is nearly straight linear without deflecting or branching, 
figure A-11(b). The fractographic features are crystallographic facets in the underaged specimen 
and relatively flat plateaus, some with faint striations, in the overaged specimen, figures A-12 
and A-13. These different characteristics of microstructure, crack path, and fractograph must be 
associated with the aforementioned different FCG behaviors/resistances of the underaged and 
overaged specimens. 

The coherent particles are known to be sheared by dislocations and promote planar slip. 
Therefore, the microstructure of the underaged specimen, hardened by coherent particles, gives 
rise to inhomogeneous dislocation distribution upon plastic deformation, leading to the formation 
of pile-up ahead of crack tip. During the unloading part of the fatigue cycle, the back stress 
within the pile-up forces the dislocations to move in the opposite direction on the same slip 
plane, because the particles are already destroyed in this plane. This reversed dislocation 
movement/slip will continue until the back stress equals the friction stress of the particle free 
matrix. Consequently, the reversible slip increases the number of fatigue cycles necessary to 
produce unit crack extension or slows the FCG (references 4, 13, 15, and 50). and raises the 
threshold level. Besides, Cu and Mg in solid solution lower the stacking fault energy and restrict 
cross-slip, leading to planar slip (references 51 and 52). The planar slip favors cracking along slip 
facets and occurrence of crack deflection and branching. The effective stress intensity factor or 
the driving force for FCG for a deflected and branched crack is considerably smaller than that of 
a straight crack of the same (projected) length, resulting in slower FCG and higher threshold 
level (references 53 through 57). 
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Overaging produces precipitates incoherent with the matrix. The incoherent precipitates are 
nonshearable, widely spaced for the dislocations to pass between them, and looped and bypassed 
by dislocations, favoring cross-slip. In addition, the dislocation movement during unloading part 
of the fatigue cycle is irreversible and hence the crack tip damage per cycle is much higher, as 
well as the FCG rate, than for the underaged condition. This results in wavy slip, which promotes 
more homogeneous deformation, reduces crack tortuosity, and induces poor fatigue resistance. 
This wavy slip mode and the accumulation of dislocations combined with the precipitates cause 
dimple formation and flat crack growth. Furthermore, lesser contents of Cu and Mg in solid 
solution lead to easier cross-slip, greater FCG (reference 52), and lower threshold level. 

CONCLUSIONS 

• The underaging induced greater resistance to threshold FCG, evidenced by greater AK& and 
Kmax, than the overaging. 

• The underaging resulted in a microstructure containing coherent shearable precipitates and a 
faceted tortuous crack path, whereas the overaging resulted in a microstructure containing 
incoherent nonshearable precipitates and a nearly straight crack path. 

• The greater threshold FCG resistance of the underaged specimen is attributed to the coherent 
shearable precipitates. Those precipitates facilitate reversible planar slip, promote crack 
deflection and branching, lower the effective stress intensity factor for FCG, and slow down 
FCG. 
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Figure A-9: TEM Micrograph of Underaged Specimen 

22 APPENDIX A 



NAWCADPAX/TR-2001/177 

Müffi 

0.5iun 

Pill 

Figure A-10: TEM Micrograph of Overaged Specimen 
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Figure A-l 1: Fatigue Crack Paths in Underaged and Overaged Specimens 
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